Nosetests - Pytest

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

This presentation covers the major changes that | am
making to transition the code base to pytest from
nosetests. | focus on the impacts this change will
have on your workflow when writing and running our
unit tests.

Motivation

Writing Tests

Running Tests

Motivation

Pytest is Actively Maintained

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

Nosetests is currently in maintenance mode, so there
is little development activity aside from bug fixes. In
the future, the project is likely to shutdown entirely.
We don’t want to be relying on it when that happens,
SO we’re transitioning to pytest, which is actively
being developed.

Pytest Found Deprecation Warnings

+ np.random.randint(a, b + 1)

+ with self.assertRaisesRegexp (Exception, “"msg$”) :

+

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

When | was making the changes needed to transition
to pytest, Jerry pointed out that pytest was catching
deprecation warnings that nosetests had been
missing. These are the two kinds of warnings raised,
which | have already fixed in my PR.

Pytest Asserts Are More Pythonic

unittest pytest

self.assertEqual (a, b) assert a ==

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

The syntax in pytest is much nicer! | compare with
unittest here since that’s the predominant syntax in
our code.

Writing Tests

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

Assertions

unittest pytest

self.assertEqual (a, b) assert

assertlLessThan (a, b)

self.assertIn(a, my list) assert in my list

self.assertRaises (Exception) : pytest.raises (Exception) :

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

Here is a sample of differences in assertion syntax. In
general, you can pretty safely bet that the pytest
syntax is just an assert followed by the normal test
you would write in python, e.g. in an if condition.

No Constructors Iin Tests

assert

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

In nosetests, you could do this.

No Constructors Iin Tests

assert

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

In pytest, tests are not allowed to have constructors,
ever. Note that this is a problem whenever pytest
tries to load a class with a constructor, whether or not
there are actually tests there. This is a problem | will
address in more detall later.

Setup and Teardown

UnitTest Style Pytest / Nose Style

class TestA (TestCase) : class TestA:
def setUp(self): def setup method(self) :
def ééérDown(self): def ééérdown_method(self):
def éééUpClass(self): def éééup_class(self):

def tearDownClass (self): def teardown class(self):

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

Instead, you can use one of these two styles for similar
functionality. Notice that to use the unittest style
camelcase methods, your test class must inherit from
unittest. TestCase

Pytest Fixtures

created once per class
def
setup code

yield # if no teardown, use return

teardown code

assert

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

An even better option is to use pytest fixtures. Broadly
speaking, they are a way to inject dependencies into
your code. For example, if we want to test an
analysis script, we can use a fixture to generate
dummy data and then pass that data into our
analysis function. This fixture can run setup code and
teardown code, replacing the need for the methods
on the previous slide. If fixtures are expensive to
setup, you can set a scope to limit how often they are
re-created. Fixtures can also be shared across
classes and files by defining them in conftest.py files
orin __init__.py files, which is a great way to re-use
setup code.

Test Discovery

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

Pytest’s discovery rules are a little different from nose,
though in general our code is compatible still.
Modules must start or end with test, separated from
the rest of the name by an underscore. Classes must
begin with uppercase Test, and functions must begin
with test_. Note that test functions can be either not
inside any class or inside a test class.

Test Discovery

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

For example, consider the integration test file
test workflow.py (
runscripts/cloud/util/test._ workflow.py). It has a
constructor, so we can't let pytest import it, but it
looks like a test based on its naming. To fix this, |
renamed it as integration_test_workflow.py. With the
test in the middle, it is ignored by pytest.

Running Tests

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

Running Tests

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

Execute pytest instead of nosetests

Test Output: Passing

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

This is what it looks like when your tests pass. Note
that I've omitted a bunch of test output for simplicity.

Failures

assert

assert

assert

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

Here are some examples of test failures. Notice that
pytest shows some code context, the line that failed,
what in particular caused the assertion to fail, and a
filename and line number.

Key Takeaways

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

More Information

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

Documentation at pytest.org. My changes are in
PR#728.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

