

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

1

Nosetests → Pytest

Created by Christopher Skalnik as a student in the Markus Covert Lab at Stanford University. Owned by the creator per the
Research Policy Handbook, 9.2.2.A. Licensed under a Creative Commons Attribution 4.0 International License.

This presentation covers the major changes that I am
making to transition the code base to pytest from
nosetests. I focus on the impacts this change will
have on your workflow when writing and running our
unit tests.

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

2

Motivation

Writing Tests

Running Tests

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

3

Motivation

Writing Tests

Running Tests

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

4

Pytest is Actively Maintained

“… [Nose] will likely cease without a new
person/team to take over maintainership.”

– Nose Maintainers

nose.readthedocs.io/en/latest/index.html#note-to-users

Nosetests is currently in maintenance mode, so there
is little development activity aside from bug fixes. In
the future, the project is likely to shutdown entirely.
We don’t want to be relying on it when that happens,
so we’re transitioning to pytest, which is actively
being developed.

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

5

Pytest Found Deprecation Warnings
- np.random.random_integers(a, b)

+ np.random.randint(a, b + 1)

- with self.assertRaises(Exception) as c:

- ...

- self.assertEqual(c.exception.message, …)

+ with self.assertRaisesRegexp(Exception, “^msg$”):

+ ...

When I was making the changes needed to transition
to pytest, Jerry pointed out that pytest was catching
deprecation warnings that nosetests had been
missing. These are the two kinds of warnings raised,
which I have already fixed in my PR.

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

6

Pytest Asserts Are More Pythonic

unittest pytest

self.assertEqual(a, b) assert a == b

The syntax in pytest is much nicer! I compare with
unittest here since that’s the predominant syntax in
our code.

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

7

Motivation

Writing Tests

Running Tests

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

8

Assertions

unittest pytest

self.assertEqual(a, b) assert a == b

self.assertLessThan(a, b) assert a < b

self.assertIn(a, my_list) assert a in my_list

self.assertRaises(Exception): pytest.raises(Exception):

Here is a sample of differences in assertion syntax. In
general, you can pretty safely bet that the pytest
syntax is just an assert followed by the normal test
you would write in python, e.g. in an if condition.

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

9

No Constructors in Tests

class TestTmp(object):

 def __init__(self):

 # setup logic

 def test_0(self):

 x = func_under_test()

 assert x == 2

In nosetests, you could do this.

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

10

No Constructors in Tests

class TestTmp(object):

 def __init__(self):

 # setup logic

 def test_0(self):

 x = func_under_test()

 assert x == 2

In pytest, tests are not allowed to have constructors,
ever. Note that this is a problem whenever pytest
tries to load a class with a constructor, whether or not
there are actually tests there. This is a problem I will
address in more detail later.

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

11

Setup and Teardown

UnitTest Style

class TestA(TestCase):

 def setUp(self):
 ...
 def tearDown(self):
 ...
 def setUpClass(self):
 ...
 def tearDownClass(self):
 ...

Pytest / Nose Style

class TestA:

 def setup_method(self):
 ...
 def teardown_method(self):
 ...
 def setup_class(self):
 ...
 def teardown_class(self):
 ...

Instead, you can use one of these two styles for similar
functionality. Notice that to use the unittest style
camelcase methods, your test class must inherit from
unittest.TestCase

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

12

Pytest Fixtures
@pytest.fixture(scope=”class”) # created once per class

def load_data():

 # setup code

 yield ‘{“foo”: “bar”}’ # if no teardown, use return

 # teardown code

def test_analyze(load_data):

 analysis_results = analyze(load_data())

 assert results == [“myResults”]

An even better option is to use pytest fixtures. Broadly
speaking, they are a way to inject dependencies into
your code. For example, if we want to test an
analysis script, we can use a fixture to generate
dummy data and then pass that data into our
analysis function. This fixture can run setup code and
 teardown code, replacing the need for the methods
on the previous slide. If fixtures are expensive to
setup, you can set a scope to limit how often they are
re-created. Fixtures can also be shared across
classes and files by defining them in conftest.py files
or in __init__.py files, which is a great way to re-use
setup code.

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

13

Test Discovery
● Pytest loads based on:

– Modules: test_*.py or *_test.py

– Classes: Test*

– Functions (outside class or in test class): test_*

Pytest’s discovery rules are a little different from nose,
though in general our code is compatible still.
Modules must start or end with test, separated from
the rest of the name by an underscore. Classes must
begin with uppercase Test, and functions must begin
with test_. Note that test functions can be either not
inside any class or inside a test class.

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

14

Test Discovery
● Pytest loads based on:

– Modules: test_*.py or *_test.py

– Classes: Test*

– Functions (outside class or in test class): test_*

● Example: Naming integration tests file

– ❌ test_workflow.py

– ❌ workflow_test.py

– ✅ integration_test_workflow.py

For example, consider the integration test file
test_workflow.py (
runscripts/cloud/util/test_workflow.py). It has a
constructor, so we can’t let pytest import it, but it
looks like a test based on its naming. To fix this, I
renamed it as integration_test_workflow.py. With the
test in the middle, it is ignored by pytest.

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

15

Motivation

Writing Tests

Running Tests

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

16

Running Tests

$ pytest

Execute pytest instead of nosetests

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

17

Test Output: Passing
$ pytest

== test session starts ====================================

platform darwin -- Python 2.7.16, pytest-4.6.5, py-1.5.4, pluggy-0.13.0

benchmark: 3.2.2 (defaults: timer=time.time disable_gc=False min_rounds=5 min_time=0.000005
max_time=1.0 calibration_precision=10 warmup=False warmup_iterations=100000)

rootdir: /path/to/repository/root/, inifile: pytest.ini

plugins: benchmark-3.2.2, cov-2.8.1

collected 111 items

models/ecoli/tests/test_arrow.py . [0%]

path/to/second/test.py [10%]

...

=============================== 109 passed, 2 skipped in 7.29 seconds ===========================

This is what it looks like when your tests pass. Note
that I’ve omitted a bunch of test output for simplicity.

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

18

Failures
class TestTmp(object):

 def test_0(self):

 x = 1

 assert x == 2

 def test_1(self):

 x = 1

 assert 0 < x < 1

 def test_2(self):

 x = {1: 2}

 assert 5 in x

 def test_0(self):

 x = 1

> assert x == 2

E assert 1 == 2

test_tmp.py:5: AssertionError

 def test_1(self):

 x = 1

> assert 0 < x < 1

E assert 1 < 1

test_tmp.py:9: AssertionError

 def test_2(self):

 x = {1: 2}

> assert 5 in x

E assert 5 in {1: 2}

test_tmp.py:13: AssertionError

Here are some examples of test failures. Notice that
pytest shows some code context, the line that failed,
what in particular caused the assertion to fail, and a
filename and line number.

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

19

Key Takeaways

● Writing Tests

– Use assert

– Use setup_method, not __init__

● Running Tests

– Update dependencies

– Run pytest, not nosetests (change in PyCharm)

2019-11-21 Covert Lab Meeting: Pytest Migration
© 2019 Christopher Skalnik, CC-BY

20

More Information

pytest.org

PR#728

Documentation at pytest.org. My changes are in
PR#728.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

